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In order to efficiently solve large dense complex linear systems arising from electric field integral equations (EFIE) formulation of 

electromagnetic problems, the adaptive cross-approximation (ACA) has been used to accelerate the matrix-vector product (MVP) 
operations. This paper presents an efficient representation of impedance matrix of ACA for microstrip problems. First, a series of basis 
matrices at lowest level are constructed by singular value decomposition (SVD). Based on the basis matrices, the far-field interaction 
parts of impedance matrix can be represented by multiplication of three sparse matrices in recursive manner. Numerical experiments 
demonstrate that our efficient representation of ACA algorithm outperforms original ACA in terms of memory of far-field interactions 
and the time per MVP operation. 
 

Index Terms—Computational electromagnetics, method of moments, compression algorithm 
 

I. INTRODUCTION 
fficient modeling and simulation of electromagnetic (EM) 
scattering and radiation from conducting structures 

continues to be an active topic of research. The method of 
moments (MoM) based on electric field integral equations 
(EFIE) [1] has been a very efficient computational method for 
the EM analysis of arbitrary shaped antennas. However, the 
conventional MoM results in a dense linear system to solve. 
Direct methods for inverting the dense impedance matrix 
require O(N3) operations. This necessity renders conventional 
MoM impractical for real-life applications.  

In recent years, there have been a number of techniques that 
successfully reduce the memory requirements as well as the 
computational time associated with the iterative solution of 
EFIE. The multilevel fast multiple algorithm (MLFMA) [2] is 
famous and widespread in computational EM. The MLFMA 
reduces the numerical complexity of both memory and CPU 
time to O(NlogN). However, MLFMA is the Green’s function 
dependent, because it decomposes the Green’s function 
through Gegenbauer’s additional theorem. For complex 
Green’s functions, MLFMA becomes much more involved 
than the case of the free space Green’s function. The fast 
Fourier transformation (FFT) based methods such as the 
sparse-matrix canonical grid method(SMCG)[3] use a uniform 
grid to compute matrix entries so that a Toeplitz matrix is 
resulted where the FFT can be utilized to speed up the matrix-
vector product (MVP). For the volume integral equation (VIE), 
the FFT methods achieve complexity of O(NlogN), whereas 
for surface equation, the complexity is reduced to O(N3/2).The 
adaptive cross approximation (ACA) [4, 5] algorithm has been 
developed and widely used to solve large magneto-static 
problems and electromagnetic wave problems of moderate 
electric size. In contrast with MLFMA, the ACA algorithm is 
purely algebraic and, therefore, does not depend on Green’s 
function. Moreover, the great advantage of ACA algorithm is 
that it can be easily integrated into the existing MoM codes. 

In this paper, we propose an efficient compression 
representation of impedance matrix of ACA algorithm firstly. 
Because of complex Green’s function, the efficient 
compression representation of ACA algorithm is then used to 
analyze the microstrip problems. Numerical experiments 
demonstrate that the efficient compression representation of 
impedance matrix of ACA is more efficient than original ACA 
in terms of memory requirements and MVP time per iteration. 

II. METHOD 

The EFIE formulation of the analysis of microstrip problem 
using planar Rao-Wilton-Glisson (RWG) basis functions for 
surfaces modeling is presented in[1]. The resulting linear sys-
tems after Galerkin’s testing reads 

Z·I = V                                        (1) 
where Z is the impedance matrix and is symmetrical, I is col-
umn vector containing the unknown coefficients of the surface 
current expansion with RWG basis functions and V is the dis-
cretization of the incident field. 

In ACA algorithm, we use a hierarchical decomposition of 
the problem domain into an oct-tree of groups, which is the 
same as MLFMA. L is the level of the oct-tree. Let ZNF denote 
submatrices corresponding to the near-field field interaction, 
Zl  denotes the far-field interaction parts of the impedance ma-
trix at level l. The impedance matrix can be represented as 
Z=ZNF

+ZL+…+Zl+…+Z2. According to ACA algorithm, each 
submatrix l

ijΖ of Zl can be represented as the product of two 
low rank matrices as follow =l l l

ij ir rjΖ U V . 
In this paper, an efficient compression representation of 

the ACA algorithmis proposed. At the lowest level L, the far-
field interaction submatrix Zl can be represented as  

( ) ( ) c
ˆ( ) diag diag

i j

L L
ir L jrL ⎡ ⎤= ⎣ ⎦Z U Z U (3) 

where
i

L
irU and ˆ

LZ are basis and coupling matrices, respectively. 

At l(l>1) level, the basis
i

l
irU is represented as 1 1

i

l l l
ir i i

+ +=U U E , 
where 1l

i
+U is basis corresponding to nonempty subgroup at 
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